Generation of bi-monotone patches from quadrilateral mesh for reverse engineering

نویسندگان

  • Erkan Gunpinar
  • Hiromasa Suzuki
  • Yutaka Ohtake
  • Masaki Moriguchi
چکیده

Thanks to recent improvements, computational methods can now be used to convert triangular meshes into quadrilateral meshes so that the quadrilateral elements capture well the principal curvature directional fields of surfaces and intrinsically have surface parametric values. In this study, a quadrilateral mesh generated using the mixed integer quadrangulation technique of Bommes et al. is used for input. We first segment a quadrilateral mesh into four-sided patches. The feature curves inside these patches are then detected and are constrained to act as the patch boundaries. Finally, the patch configuration is improved to generate large patches. The proposed method produces bi-monotone patches, which are appropriate for use in reverse engineering to capture the surface details of an object. A shape control parameter that can be adjusted by the user during the patch generation process is also provided to support the creation of patches with good bi-monotone shapes. This study mainly targets shape models of mechanical parts consisting of major smooth surfaces with feature curves between them. © 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive patch-based mesh fitting for reverse engineering

In this paper, we propose a novel adaptive mesh fitting algorithm that fits a triangular model with G1 smoothly stitching bi-quintic Bézier patches. Our algorithm first segments the input mesh into a set of quadrilateral patches, whose boundaries form a quadrangle mesh. For each boundary of each quadrilateral patch, we construct a normal curve and a boundary-fitting curve, which fit the normal ...

متن کامل

Motorcycle graph enumeration from quadrilateral meshes for reverse engineering

Recently proposed quad-meshing techniques allow the generation of high-quality semi-regular quadrilateral meshes. This paper outlines the generation of quadrilateral segments using such meshes. Quadrilateral segments are advantageous in reverse engineering because they do not require surface trimming or surface parameterization. The motorcycle graph algorithm of Eppstein et al. produces the mot...

متن کامل

On G stitched bi-cubic Bézier patches with arbitrary topology

Lower bounds on the generation of smooth bi-cubic surfaces imply that geometrically smooth (G) constructions need to satisfy conditions on the connectivity and layout. In particular, quadrilateral meshes of arbitrary topology can not in general be covered with G-connected Bézier patches of bi-degree 3 using the layout proposed in [ASC17]. This paper analyzes whether the pre-refinement of the in...

متن کامل

Smooth Bi-3 spline surfaces with fewest knots

Converting a quadrilateral input mesh into a C surface with one bi-3 tensorproduct spline patch per facet is a classical challenge. We give explicit local averaging formulas for the spline control points. Where the quadrilateral mesh is not regular, the patches have two internal double knots, the least number and multiplicity to always allow for an unbiased G construction.

متن کامل

Physical Optics Calculation of Electromagnetic Scattering From Haack Series Nose Cone

In this paper, the physical optics method is used to study the problem of electromagnetic scattering from Haack series nose cone. First, a meshing scheme is introduced which approximates the curvature of the surface by piecewise linear functions in both axial and rotational directions. This results in planar quadrilateral patches and enables efficient determination of the illuminated region and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2013